
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014 pp. 61-64
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Applications of Meta Heuristic Search Algorithms
in Software Testing: An Investigation into

Recent Trends
Abhishek Pandey1, Dr. Soumya Banerjee2 and Dr. G. Sahoo3

1Assistant professor, UPES, Dehradun
2CSE Associate Professor, BIT Mesra Ranchi

3CSE Professor, CSE BIT Mesra Ranchi
E-mail: 1apandey@ddn.upes.ac.in, 2soumyabanerjee@bitmesra.ac.in, 3gsahoo@bitmesra.ac.in

Abstract: Software engineering is concerned to develop software
that is economical as well as efficient in its applications. This is a sub
discipline of computer science and engineering. There are various
phases in software development life cycle. Software testing
constitutes of around 50% of the total cost of the software
development. At the same time the branch or decision coverage has
to be maximized. This paper gives an insight into the recent trends of
the applications of search based techniques to generate Applications
of meta heuristic techniques in the field of software testing phases
originates a new field of research known as the search based
software testing The sub field of software engineering that is
concerned with the application of search based techniques into the
field of software engineering is known as search based software
engineering(SBSE).

Keywords: Search based software engineering, meta heuristic
techniques, software testing

1. INTRODUCTION

Automatic structural testing and test data generation has been
the area of interest in the research community since 1970s. In
this decade two approaches of the problem emerged. The first
one came to be known as symbolic execution [1] and the
method that reformulated the problem as an optimization
problem, which latter known as search based approach. For a
give path through a program, symbolic execution involves the
construction of the path condition. The path condition is the
set of constraints in terms of the input variables. It describes
when the selected paths executed. The path conditions can be
set of linear constraints or nonlinear constraints or the
combinations of both. In case of nonlinear constraints it
becomes very complex tasks to solve the constraints. Latter in
the concolictesting[2] some problems associated with
symbolic execution has been alleviated combining both
symbolic execution and concrete testing.The application of
evolutionary algorithms to test data generation is often
referred to as evolutionary testing in the literature .the first
reported work on this topic is that of the Xanthakis et al [3].

Up until this point, work on structural test data generation had
largely focused on finding input data for specific paths or
individual structures with programs, such as branches or
statements. Initially, however, techniques using Genetic
Algorithms took slightly different ways. Different techniques
applying Evolutionary Algorithms to structural test data
generation can be categorized on the basis of objective
function construction. Coverage-Oriented Approaches reward
individuals on the basis of covered program structures. In the
work of Roper [4], an individual is rewarded on the basis of
the number of structures executed in accordance with the
coverage criterion. Under this scheme, however, the search
tends to reward individuals that execute the longest paths
through the test object . Guidance is not given for structures
that are unlikely to be covered by chance, for example
deeplynestedstructures, or branch predicates that are only true
when an input variable has to be a specific value from a large
domain.

2. LITERATURE REVIEW

The work of Watkins [5] attempts to obtain full path coverage
for programs. The objective function penalises individuals that
follow already covered paths, by assigning a value that is the
inverse of the number of times the path has already been
executed during the search. The direction of the search,
therefore, is under constant adaptation. However, the
penalizations of covered paths, in itself, provides little
guidance to the discovery of new, previously unfound paths.
The results show that in comparison with Random Testing, the
Genetic Algorithm approach required an order of magnitude
fewer tests to achieve path coverage for two experimental
programs. However, both of these programs are of a simple
nature, containing no loops. Furthermore, the input domains
were artificially restricted for the search. In general, the
problem with coverage-oriented approaches is the lack of

Abhishek Pandey, Dr. Soumya Banerjee and Dr. G. Sahoo

Advances in Computer Science and Information Technology (ACSIT)

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014

62

guidance provided for structures which are only executed with
values from a small portion of the overall input domain.
Therefore, it is difficult to expect full coverage with these
techniques for any non-trivial program.Structure-Oriented
Approaches follow similar lines to the earlier work of
Korel,and take a `divide and conquer' approach to obtaining
full coverage. A separate search is undertaken for each
uncovered structure required by the coverage criterion.
Structure-oriented techniques differ in the type of information
used by the objective function. These can be categorised as
either Branch- Distance-Oriented, Control-Oriented, or
Combined approaches.Branch-Distance-Oriented approaches
exploit information from branch predicates, in a similar style
to earlier work by Miller and Spooner, and later Korel. In the
work of Xanthakis et al. [3], Genetic Algorithms are employed
to generate test data for structures not covered by random
search. A path is chosen, and the relevant branch predicates
are extracted from the program. The Genetic Algorithm is then
used to find input data that satisfies all the branch predicates at
once, with the objective function summing branch distance
values. However, this scheme suffers from similar problems
suffered by the work of Miller and Spooner. Furthermore, the
need to select a path is a burden on the tester. Inthe work of
Jones et al. [6] for obtaining branch coverage, a path does not
need to be selected. The objective function is simply formed
from the branch distance of the required branch. However, no
guidance is provided so that the branch is actually reached
within the program structure in the first place. McGraw et al.
[7] alleviate this problem for condition coverage, by delaying
an attempt to satisfy a condition within a branching expression
until previous individuals have been already found which
reach the branching node in question. The initial generation
for the target condition is then seeded with these individuals.
Thisscheme, however, is inefficient if test data is required for
the coverage of one, specific condition. The earlier work of
Korel had already removed the need for the tester to select a
path. Since new test data considered by the search had to
conform to the successful sub-path already found, explicit
control-oriented information regarding the target did not need
to be included in the objective function. However, such rigid
constraints increase the chances of the search becoming via
the objective function. This is the problem addressed by
Control-Oriented approaches. With Control-Oriented
approaches, the objective function considers the branching
nodes that need to be executed in some desired way in order to
bring about execution of the desired structure. The approach of
Jones et al. [11] to loop testing falls into this category. Here,
the objective function is simply the difference between the
actual and desired number of iterations. In the work of Pargas
et al. [13], for statement and branch coverage, the control
dependence graph of the test object is used. The sequence of
control dependent nodes is identified for each structure. These
are the branching nodes that must be executed with a specific
outcome in order for the structure to be reached. The objective
value of an individual is simply assigned as the number of
control dependent nodes executed as intended. Recall that the

branch leading away from the target at a control dependent
node is identified as a critical branch in Korel's work. The
measure used by Pargas et al. is therefore equivalent to the
number of critical branches successfully avoided by the
individual.

3. APPLICATIONS OF METAHEURISTIC SEARCH
ALGORITHMS IN SOFTWARE TESTING

In the work of Watkins[10], Roper[9], Pargas et.al[13] the
fitness of an individual is determined on the basis of the
coverage measured of the associated test data. i.e test data set
that covered more program branches than others are assigned
more fitness values. Whereas Watkins,Roper measure the
coverage acquired by the test datum on the basis of the control
flow graph. Pargas et al.use the control dependence graph of
the test object for this purpose. One drawback of their
approach is exclusive use of coverage as fitness criteria.
Therefore search will mainly be directed at the execution of a
few long and easily accessible program paths therefore
making it more difficult to attain the complete coverage.
Different objective functions in different approaches:

The work of Tracey [7] builds on previous work which used
Simulated Annealing. The strategy for combining both
techniques is as follows. The control dependent nodes for the
target structure are identified. If an individual takes a critical
branch from one of these nodes, a distance calculation is
performed using the branch predicate of the required,
alternative branch. This is computed using the functions of
Table (and Table for and and or logical connectives). Tracey
then uses the number of successfully executed control
dependent nodes to scale branch distance values. Let branch
dist be the branch distance calculation performed at the
branching node where a critical branch was taken.

 The formula used by Tracey for computing the objective
function is:

 Executed/ dependent × br _distance

Wegener et al. [8] map branch distance values branch dist
logarithmically into the range [0, 1] (call this m_branchdist).
The minimizing objective function is zero if the target
structure is executed, otherwise, the objective value is
computed as:

(dependent -executed - 1) +m_ branch dist

The (dependent –executed-1) sub-calculation is referred to as
the approximation level or perhaps more appropriately, the
approach level attained by the individual.

In simple form the objective value can be calculated as the
following:

Applications of Meta Heuristic Search Algorithms in Software Testing: An Investigation into Recent Trends 63

Advances in Computer Science and Information Technology (ACSIT)

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014

Approach level + branch distance

4. SEARCH BASED TESTING TOOLS

Austin and cute testing tools [9] are based on the search based
and symbolic execution based testing tools respectively.
Concolic testing[10] originates in the seminal work of
Godefroid et al. on Directed Random Testing . It formulates
the test data generation problem as one of finding a solution to
a constraint satisfaction problem, the constraints of which are
produced by concolic execution of the program under test.
Concolicexecution[2] combines symbolic [1] and concrete
execution. Concrete execution drives the symbolic exploration
of a program, and dynamic variable values obtained by real
program execution can be used to simplify path constraints
produced by symbolic execution. Search based testing [11]
formulates the test data adequacy criteria as objective
functions, which can be optimized using Search Based
Software Engineering [12]. The search space is the space of
possible inputs to the program under test. The objective
function captures the particular test adequacy criterion of
interest. Concolic testing builds on the ideas of symbolic
execution. For a given path through a program, symbolic
execution involves constructing a path condition; a system of
constraints in terms of the input variables that describe when
the path will be executed. The path condition can easily
become unsolvable, however, if it contains expressions that
cannot be handled by constraint solvers. This is often the case
with floating-point variables,or non-linear constraints.
Concolic testing can alleviate some of the problems of non-
linearity by combining concrete execution with symbolic
execution. The idea is to simplify the path condition by
substituting sub-expressions with concrete values, obtained by
actual dynamic executions. This substitution process can
remove some of the non-linear sub-expressions in a path
condition making them amenable to a constraint solver. The
term concolic was coined by Sen et al. [2] in their work
introducing the CUTE tool, which is based upon similar
principles.CUTE attempts to execute all feasible program
paths, using a depth-first strategy. The first path executed is
that, which is traversed with all zero or random inputs as
described above.

The next path to be attempted is the previous path, but taking
the alternative branch at the last decision statement executed
in the path. The new path condition is therefore the same

as the previous path condition, but with the last constraint
negated, allowing for substitution of sub-expressions in the
new path condition with sensible concrete values (as in the
example above). For programs with unbounded loops, CUTE
may keep unfolding the body of the loop infinitely many
times, as there may be an infinite number of paths. The CUTE
tool is therefore equipped with a parameter which places a
limit on the depth of the depth-first path unfolding
strategy.AUSTIN is a tool for generating branch adequate test

data for C programs. AUSTIN does not attempt to execute
specific paths in order to cover a target branch; the path taken
up to a branch is an emergent property of the search process.
The objective function used by AUSTIN was introduced by
Wegener et al. [13] for the Daimler Evolutionary Testing
System. It evaluates an input against a target branch using two
metrics; the approach level and the branch distance. The
approach level records how many nodes on which the branch
is control dependent, were not executed by a particular input.
The fewer control dependent nodes executed, the ‘further
away’ the input is from executing the branch in control flow
terms. The branch distance is computed using the condition of
the decision statement at which the flow of control diverted
away from the current ‘target’ branch.

5. MODELLING THE TEST PROBLEM AS A MULTI
OBJECTIVE PROBLEM

The multi objective approach to test data generation
problem[14] emerged recently which aims to reformulate the
test data generation problem as a multi objective optimization
problem. Recent advances in multi objective optimization is
clear success toward this scheme. More recently the test data
generation problem has been attacked with the
memeticalgorithms[15,16]. A Memetic Algorithm (MA)
hybridizes global and local search. The use of MAs for test
generation was originally proposed by Wang and Jeng in the
context of test generation for procedural code. Arcuri [17]
combined a GA with hill climbing to form a MA when
generating unit tests for container classes. Harman and
McMinn [18] analyzed the effects of global and local search,
and concluded that MAs achieve better performance than
global search and local search. Baresi et al. [19] also use a
hybrid evolutionary search in their TestFul test generation
tool, where at the global search level a single test case aims to
maximize coverage, while at the local search level the
optimization targets individual branch conditions.

6. IDENTIFIED VARIOUS RESEARCH AREAS
UNDER SEARCH BASED SOFTWARE TESTING

Various methods applying in the software testing problem has
been demonstrated using small programs. It can be scaled to
large programs also. recent developments in the field of
genetic algorithm and multi objective optimization algorithms
can be utilized to search based testing. Constraint satisfaction
problems is another research area under the search based
testing.

Various hybrid approaches along with the data mining tools
can also be utilized in search based testing.

7. CONCLUSION

In this paper we have tried to bring almost all the
developments in the field of search based testing. Also we

Abhishek Pandey, Dr. Soumya Banerjee and Dr. G. Sahoo

Advances in Computer Science and Information Technology (ACSIT)

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014

64

have identified some key areas of research were these
approaches can be utilized. We are also working on some new
models of testing were we will use program slicing and
applying multi objective optimization algorithms to solve the
test data generation problems as a completely new way.

REFERENCES

[1] J. C. King, Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, July 1976

[2] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In M. Wermelinger and H. Gall, editors,
ESEC/SIGSOFT FSE, pages 263–272. ACM, 2005.

[3] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and
K. Karapoulios. Application of genetic algorithms to software
testing.In 5th International Conference on Software Engineering
and its Applications, pages 625-636, Toulouse, France, 1992.

[4] M. Roper. Computer aided software testing using genetic
algorithms. In 10th International Software Quality Week, San
Francisco, USA, 1997.

[5] Watkins, A. E. L. (1995) A Tool for the Automatic Generation of
Test Data using Genetic Algorithms. In Proc. SoftwareQuality
Conf., Dundee, Scotland.

[6] B. Jones, H. Sthamer, and D. Eyres. Automatic structural testing
using genetic algorithms. Software Engineering Journal,
11(5):299-306, 1996.

[7] G.McGraw, C.Michael, and M.Schatz. Generating software test
data by evolution. IEEE Transactions on Software Engineering,
27(12):1085-1110, 2001.

[8] K. Lakhotia, M. Harman, P. McMinn, Handling dynamic data
structures in search based testing, in: GECCO ’08: Proceedings
of the 10th annual conference on Genetic and evolutionary
computation, ACM, Atlanta, GA, USA, 2008, pp. 1759–1766.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. ACM SIGPLAN Notices, 40(6):213–
223, June 2005.

[10] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The species
per path approach to search-based test data generation. In
Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA 2006), pages 13–24, Portland,
Maine, USA, 2006. ACM.

[11] P. McMinn. Search-based software test data generation: A
survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004

[12] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing. Information and
Software Technology, 43(14):841–854, 2001.

[13] Harman, Lakhotia K. Phil Mcminn. A multi objective approach
to search based data generation, GECCO’07, July 7–11, 2007,
London, England, United Kingdom.

[14] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Transactions onSoftware Engineering, 39(2):276–291, 2013.

[15] A. Arcuri and X. Yao. A memetic algorithm for test data
generation of object-oriented software. In IEEE Congress on
Evolutionary Computation(CEC), pages 2048–2055, 2007.

[16] A. Arcuri and G. Fraser. On parameter tuning in search based
software engineering. In International Symposium on Search
Based Software Engineering (SSBSE), pages 33–47, 2011.

[17] M. Harman and P. McMinn. A theoretical and empirical study of
search based testing: Local, global and hybrid search. IEEE
Transactions on Software Engineering (TSE), 36(2):226–247,
2010

[18] L. Baresi, P. L. Lanzi, and M. Miraz. Testful: an evolutionary
test approach for java. In IEEE Int.Conference on Software
Testing, Verification andValidation (ICST), pages 185–194,
2010.

