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Abstract: Software engineering is concerned to develop software 
that is economical as well as efficient in its applications. This is a sub 
discipline of computer science and engineering. There are various 
phases in software development life cycle. Software testing 
constitutes of around 50% of the total cost of the software 
development. At the same time the branch or decision coverage has 
to be maximized. This paper gives an insight into the recent trends of 
the applications of search based techniques to generate Applications 
of meta heuristic techniques in the field of software testing phases 
originates a new field of research known as the search based 
software testing The sub field of software engineering that is 
concerned with the application of search based techniques into the 
field of software engineering is known as search based software 
engineering(SBSE). 
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1. INTRODUCTION 

Automatic structural testing and test data generation has been 
the area of interest in the research community since 1970s. In 
this decade two approaches of the problem emerged. The first 
one came to be known as symbolic execution [1] and the 
method that reformulated the problem as an optimization 
problem, which latter known as search based approach. For a 
give path through a program, symbolic execution involves the 
construction of the path condition. The path condition is the 
set of constraints in terms of the input variables. It describes 
when the selected paths executed. The path conditions can be 
set of linear constraints or nonlinear constraints or the 
combinations of both. In case of nonlinear constraints it 
becomes very complex tasks to solve the constraints. Latter in 
the concolictesting[2] some problems associated with 
symbolic execution has been alleviated combining both 
symbolic execution and concrete testing.The application of 
evolutionary algorithms to test data generation is often 
referred to as evolutionary testing in the literature .the first 
reported work on this topic is that of the Xanthakis et al [3]. 

Up until this point, work on structural test data generation had 
largely focused on finding input data for specific paths or 
individual structures with programs, such as branches or 
statements. Initially, however, techniques using Genetic 
Algorithms took slightly different ways. Different techniques 
applying Evolutionary Algorithms to structural test data 
generation can be categorized on the basis of objective 
function construction. Coverage-Oriented Approaches reward 
individuals on the basis of covered program structures. In the 
work of Roper [4], an individual is rewarded on the basis of 
the number of structures executed in accordance with the 
coverage criterion. Under this scheme, however, the search 
tends to reward individuals that execute the longest paths 
through the test object . Guidance is not given for structures 
that are unlikely to be covered by chance, for example 
deeplynestedstructures, or branch predicates that are only true 
when an input variable has to be a specific value from a large 
domain. 

2. LITERATURE REVIEW 

The work of Watkins [5] attempts to obtain full path coverage 
for programs. The objective function penalises individuals that 
follow already covered paths, by assigning a value that is the 
inverse of the number of times the path has already been 
executed during the search. The direction of the search, 
therefore, is under constant adaptation. However, the 
penalizations of covered paths, in itself, provides little 
guidance to the discovery of new, previously unfound paths. 
The results show that in comparison with Random Testing, the 
Genetic Algorithm approach required an order of magnitude 
fewer tests to achieve path coverage for two experimental 
programs. However, both of these programs are of a simple 
nature, containing no loops. Furthermore, the input domains 
were artificially restricted for the search. In general, the 
problem with coverage-oriented approaches is the lack of 
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guidance provided for structures which are only executed with 
values from a small portion of the overall input domain. 
Therefore, it is difficult to expect full coverage with these 
techniques for any non-trivial program.Structure-Oriented 
Approaches follow similar lines to the earlier work of 
Korel,and take a `divide and conquer' approach to obtaining 
full coverage. A separate search is undertaken for each 
uncovered structure required by the coverage criterion. 
Structure-oriented techniques differ in the type of information 
used by the objective function. These can be categorised as 
either Branch- Distance-Oriented, Control-Oriented, or 
Combined approaches.Branch-Distance-Oriented approaches 
exploit information from branch predicates, in a similar style 
to earlier work by Miller and Spooner, and later Korel. In the 
work of Xanthakis et al. [3], Genetic Algorithms are employed 
to generate test data for structures not covered by random 
search. A path is chosen, and the relevant branch predicates 
are extracted from the program. The Genetic Algorithm is then 
used to find input data that satisfies all the branch predicates at 
once, with the objective function summing branch distance 
values. However, this scheme suffers from similar problems 
suffered by the work of Miller and Spooner. Furthermore, the 
need to select a path is a burden on the tester. Inthe work of 
Jones et al. [6] for obtaining branch coverage, a path does not 
need to be selected. The objective function is simply formed 
from the branch distance of the required branch. However, no 
guidance is provided so that the branch is actually reached 
within the program structure in the first place. McGraw et al. 
[7] alleviate this problem for condition coverage, by delaying 
an attempt to satisfy a condition within a branching expression 
until previous individuals have been already found which 
reach the branching node in question. The initial generation 
for the target condition is then seeded with these individuals. 
Thisscheme, however, is inefficient if test data is required for 
the coverage of one, specific condition. The earlier work of 
Korel had already removed the need for the tester to select a 
path. Since new test data considered by the search had to 
conform to the successful sub-path already found, explicit 
control-oriented information regarding the target did not need 
to be included in the objective function. However, such rigid 
constraints increase the chances of the search becoming via 
the objective function. This is the problem addressed by 
Control-Oriented approaches. With Control-Oriented 
approaches, the objective function considers the branching 
nodes that need to be executed in some desired way in order to 
bring about execution of the desired structure. The approach of 
Jones et al. [11] to loop testing falls into this category. Here, 
the objective function is simply the difference between the 
actual and desired number of iterations. In the work of Pargas 
et al. [13], for statement and branch coverage, the control 
dependence graph of the test object is used. The sequence of 
control dependent nodes is identified for each structure. These 
are the branching nodes that must be executed with a specific 
outcome in order for the structure to be reached. The objective 
value of an individual is simply assigned as the number of 
control dependent nodes executed as intended. Recall that the 

branch leading away from the target at a control dependent 
node is identified as a critical branch in Korel's work. The 
measure used by Pargas et al. is therefore equivalent to the 
number of critical branches successfully avoided by the 
individual. 

3. APPLICATIONS OF METAHEURISTIC SEARCH 
ALGORITHMS IN SOFTWARE TESTING 

In the work of Watkins[10], Roper[9], Pargas et.al[13] the 
fitness of an individual is determined on the basis of the 
coverage measured of the associated test data. i.e test data set 
that covered more program branches than others are assigned 
more fitness values. Whereas Watkins,Roper measure the 
coverage acquired by the test datum on the basis of the control 
flow graph. Pargas et al.use the control dependence graph of 
the test object for this purpose. One drawback of their 
approach is exclusive use of coverage as fitness criteria. 
Therefore search will mainly be directed at the execution of a 
few long and easily accessible program paths therefore 
making it more difficult to attain the complete coverage. 
Different objective functions in different approaches: 

The work of Tracey [7] builds on previous work which used 
Simulated Annealing. The strategy for combining both 
techniques is as follows. The control dependent nodes for the 
target structure are identified. If an individual takes a critical 
branch from one of these nodes, a distance calculation is 
performed using the branch predicate of the required, 
alternative branch. This is computed using the functions of 
Table (and Table for and and or logical connectives). Tracey 
then uses the number of successfully executed control 
dependent nodes to scale branch distance values. Let branch 
dist be the branch distance calculation performed at the 
branching node where a critical branch was taken.  

 The formula used by Tracey for computing the objective 
function is: 

 Executed/ dependent × br _distance 

Wegener et al. [8] map branch distance values branch dist 
logarithmically into the range [0, 1] (call this m_branchdist). 
The minimizing objective function is zero if the target 
structure is executed, otherwise, the objective value is 
computed as: 

(dependent -executed - 1) +m_ branch dist 

The (dependent –executed-1) sub-calculation is referred to as 
the approximation level or perhaps more appropriately, the 
approach level attained by the individual. 

In simple form the objective value can be calculated as the 
following: 
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Approach level + branch distance 

4. SEARCH BASED TESTING TOOLS 

Austin and cute testing tools [9] are based on the search based 
and symbolic execution based testing tools respectively. 
Concolic testing[10] originates in the seminal work of 
Godefroid et al. on Directed Random Testing . It formulates 
the test data generation problem as one of finding a solution to 
a constraint satisfaction problem, the constraints of which are 
produced by concolic execution of the program under test. 
Concolicexecution[2] combines symbolic [1] and concrete 
execution. Concrete execution drives the symbolic exploration 
of a program, and dynamic variable values obtained by real 
program execution can be used to simplify path constraints 
produced by symbolic execution. Search based testing [11] 
formulates the test data adequacy criteria as objective 
functions, which can be optimized using Search Based 
Software Engineering [12]. The search space is the space of 
possible inputs to the program under test. The objective 
function captures the particular test adequacy criterion of 
interest. Concolic testing builds on the ideas of symbolic 
execution. For a given path through a program, symbolic 
execution involves constructing a path condition; a system of 
constraints in terms of the input variables that describe when 
the path will be executed. The path condition can easily 
become unsolvable, however, if it contains expressions that 
cannot be handled by constraint solvers. This is often the case 
with floating-point variables,or non-linear constraints. 
Concolic testing can alleviate some of the problems of non-
linearity by combining concrete execution with symbolic 
execution. The idea is to simplify the path condition by 
substituting sub-expressions with concrete values, obtained by 
actual dynamic executions. This substitution process can 
remove some of the non-linear sub-expressions in a path 
condition making them amenable to a constraint solver. The 
term concolic was coined by Sen et al. [2] in their work 
introducing the CUTE tool, which is based upon similar 
principles.CUTE attempts to execute all feasible program 
paths, using a depth-first strategy. The first path executed is 
that, which is traversed with all zero or random inputs as 
described above. 

The next path to be attempted is the previous path, but taking 
the alternative branch at the last decision statement executed 
in the path. The new path condition is therefore the same 

as the previous path condition, but with the last constraint 
negated, allowing for substitution of sub-expressions in the 
new path condition with sensible concrete values (as in the 
example above). For programs with unbounded loops, CUTE 
may keep unfolding the body of the loop infinitely many 
times, as there may be an infinite number of paths. The CUTE 
tool is therefore equipped with a parameter which places a 
limit on the depth of the depth-first path unfolding 
strategy.AUSTIN is a tool for generating branch adequate test 

data for C programs. AUSTIN does not attempt to execute 
specific paths in order to cover a target branch; the path taken 
up to a branch is an emergent property of the search process. 
The objective function used by AUSTIN was introduced by 
Wegener et al. [13] for the Daimler Evolutionary Testing 
System. It evaluates an input against a target branch using two 
metrics; the approach level and the branch distance. The 
approach level records how many nodes on which the branch 
is control dependent, were not executed by a particular input. 
The fewer control dependent nodes executed, the ‘further 
away’ the input is from executing the branch in control flow 
terms. The branch distance is computed using the condition of 
the decision statement at which the flow of control diverted 
away from the current ‘target’ branch.  

5. MODELLING THE TEST PROBLEM AS A MULTI 
OBJECTIVE PROBLEM 

The multi objective approach to test data generation 
problem[14] emerged recently which aims to reformulate the 
test data generation problem as a multi objective optimization 
problem. Recent advances in multi objective optimization is 
clear success toward this scheme. More recently the test data 
generation problem has been attacked with the 
memeticalgorithms[15,16]. A Memetic Algorithm (MA) 
hybridizes global and local search. The use of MAs for test 
generation was originally proposed by Wang and Jeng in the 
context of test generation for procedural code. Arcuri [17] 
combined a GA with hill climbing to form a MA when 
generating unit tests for container classes. Harman and 
McMinn [18] analyzed the effects of global and local search, 
and concluded that MAs achieve better performance than 
global search and local search. Baresi et al. [19] also use a 
hybrid evolutionary search in their TestFul test generation 
tool, where at the global search level a single test case aims to 
maximize coverage, while at the local search level the 
optimization targets individual branch conditions. 

6. IDENTIFIED VARIOUS RESEARCH AREAS 
UNDER SEARCH BASED SOFTWARE TESTING 

Various methods applying in the software testing problem has 
been demonstrated using small programs. It can be scaled to 
large programs also. recent developments in the field of 
genetic algorithm and multi objective optimization algorithms 
can be utilized to search based testing. Constraint satisfaction 
problems is another research area under the search based 
testing. 

Various hybrid approaches along with the data mining tools 
can also be utilized in search based testing. 

7. CONCLUSION 

In this paper we have tried to bring almost all the 
developments in the field of search based testing. Also we 



Abhishek Pandey, Dr. Soumya Banerjee and Dr. G. Sahoo 
 

 
Advances in Computer Science and Information Technology (ACSIT) 

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014 

64

have identified some key areas of research were these 
approaches can be utilized. We are also working on some new 
models of testing were we will use program slicing and 
applying multi objective optimization algorithms to solve the 
test data generation problems as a completely new way. 
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